On solving L-SR1 trust-region subproblems

نویسندگان

  • Johannes Brust
  • Jennifer B. Erway
  • Roummel F. Marcia
چکیده

In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the ShermanMorrison-Woodbury formula to compute global solutions to trust-region subproblems. To compute the optimal Lagrange multiplier for the trust-region constraint, we use Newton’s method with a judicious initial guess that does not require safeguarding. A crucial property of this solver is that it is able to compute high-accuracy solutions even in the so-called hard case. Additionally, the optimal solution is determined directly by formula, not iteratively. Numerical experiments demonstrate the effectiveness of this solver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape-changing L-sr1 Trust-region Methods

In this article, we propose a method for solving the trust-region subproblem when a limited-memory symmetric rank-one matrix is used in place of the true Hessian matrix. The method takes advantage of two shape-changing norms to decompose the trust-region subproblem into two separate problems, one of which has a closed-form solution and the other one is easy to solve. Sufficient conditions for g...

متن کامل

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems

We discuss the integration of a sequential quadratic programming (SQP) method with an optimization-level domain decomposition (DD) preconditioner for the solution of the quadratic optimization subproblems. The DD method is an extension of the well-known Neumann-Neumann method to the optimization context and is based on a decomposition of the first order system of optimality conditions. The SQP ...

متن کامل

Trust Region Subproblem with a Fixed Number of Additional Linear Inequality Constraints Has Polynomial Complexity∗

The trust region subproblem with a fixed number m additional linear inequality constraints, denoted by (Tm), have drawn much attention recently. The question as to whether Problem (Tm) is in Class P or Class NP remains open. So far, the only affirmative general result is that (T1) has an exact SOCP/SDP reformulation and thus is polynomially solvable. By adopting an early result of Mart́ınez on l...

متن کامل

On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2017